Datenschutzeinstellungen
Diese Website verwendet Cookies zur Verbesserung des Angebots.Ihre Einwilligung ist freiwillig und kann von Ihnen jederzeit widerrufen werden.Weitere Informationen zum Datenschutz finden Sie hier
Für diese Funktion sind zusätzliche Berechtigungen erforderlich!
SpeichernAlles akzeptierenKonfigurieren
Inserenten

Jobportal der Hochschule RheinMain Aktuelle Angebote für Absolvent:innen

25 km 25 km 50 km 75 km 100 km 150 km

Informationen zur Anzeige:

Bioinformatician (m/f/d)
Stuttgart
Aktualität: 04.04.2025

Anzeigeninhalt:

04.04.2025, Robert-Bosch-Krankenhaus GmbH
Stuttgart
Bioinformatician (m/f/d)
Aufgaben:
Develop and implement bioinformatics workflows for single-cell RNA-seq and spatial omics data analysis . Optimize and apply nextflow/ nf-core pipelines for data processing and analysis. Integrate multi-omics datasets to derive meaningful biological insights. Perform quality control, normalization, clustering, and trajectory inference on single-cell datasets. Analyze spatial transcriptomics data to study tissue architecture and cellular interactions. Work on high-performance computing (HPC) environments, ensuring efficient and scalable data processing. Develop custom scripts and software tools to enhance analytical capabilities. Collaborate with wet-lab scientists to interpret results and refine experimental designs. Maintain well-documented, reproducible, and FAIR-compliant workflows.
Qualifikationen:
Required Qualifications Ph.D. or M.Sc. in Bioinformatics, Computational Biology, Data Science, or a related field . Strong experience in single-cell transcriptomics (scRNA-seq, scATAC-seq, etc.) and/or spatial omics analysis. Proficiency in R and Python for bioinformatics and statistical analysis. Hands-on experience with nf-core pipelines and Nextflow . Experience working with high-performance computing (HPC) environments and cloud-based solutions. Familiarity with open-source bioinformatics tools for single-cell analysis (e.g., Seurat, Scanpy, Cell Ranger, Squidpy). Solid understanding of machine learning approaches applied to biological data. Ability to work both independently and as part of a collaborative, interdisciplinary team. Strong problem-solving skills and attention to detail. Preferred Qualifications Experience with visualization techniques for single-cell and spatial omics data. Experience with multi-omics integration (e.g., single-cell RNA-seq + ATAC-seq/ ChIP-seq). Familiarity with database management and workflow automation. Knowledge of statistical modeling and network-based analysis. Contributions to open-source bioinformatics projects.

Berufsfeld

Bundesland

Standorte